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Abstract

Deep reinforcement learning (RL) methods have driven impressive advances in artificial intelli-
gence in recent years, exceeding human performance in domains ranging from Atari to Go to no-limit
poker. This progress has drawn the attention of cognitive scientists interested in understanding hu-
man learning. However, the concern has been raised that deep RL may be too sample inefficient –
that is, it may simply be too slow – to provide a plausible model of how humans learn. In the present
review, we counter this critique by describing recently developed techniques that allow deep RL to
operate more nimbly, solving problems much more quickly than previous methods. Although these
techniques were developed in an AI context, we propose that they may have rich implications for psy-
chology and neuroscience. A key insight, arising from these AI methods, concerns the fundamental
connection between fast RL and slower, more incremental forms of learning.

Powerful but slow: The first wave of Deep RL

Over just the past few years, revolutionary advances have occurred in artificial intelligence research,
where a resurgence in neural network or ‘deep learning’ methods [1, 2] has fueled breakthroughs in image
understanding [3, 4], natural language processing [5, 6], and many other areas. These developments have
attracted growing interest from psychologists, psycholinguists and neuroscientists, curious about whether
developments in AI might suggest new hypotheses concerning human cognition and brain function [7, 8,
9, 10, 11].

One area of AI research that appears particularly inviting from this perspective is deep reinforcement
learning (Box 1). Deep RL marries neural network modeling with reinforcement learning, a set of
methods for learning from rewards and punishments rather than from more explicit instruction [12].
After decades as an aspirational rather than practical idea, deep RL has within the last five years
exploded into one of the most intense areas of AI research, generating super-human performance in tasks
from video games [13] to poker [14] to multiplayer contests [15] to complex board games including go
and chess [16, 17, 18, 19].

Beyond its inherent interest as an AI topic, deep RL would appear to hold special interest for
psychology and neuroscience. The mechanisms that drive learning in deep RL were originally inspired
by animal conditioning research [20], and are believed to relate closely to neural mechanisms for reward-
based learning centering on dopamine [21]. At the same time, deep RL leverages neural networks to learn
powerful representations that support generalization and transfer, key abilities of biological brains. Given
these connections, deep RL would appear to offer a rich source of ideas and hypotheses for researchers
interested in human and animal learning, both at the behavioral and neuroscientific levels. And indeed,
researchers have started to take notice [7, 8].

At the same time, commentary on the first wave of deep RL research has also sounded a note of
caution. On first blush it appears that deep RL systems learn in a fashion quite different from humans.
The hallmark of this difference, it has been argued, lies in the sample efficiency of human learning versus
deep RL. Sample efficiency refers to the amount of data required for a learning system to attain any
chosen target level of performance. On this measure, the initial wave of deep RL systems indeed appear
drastically different from human learners. To attain expert human-level performance on tasks such as
Atari video games or chess, deep RL systems have required many orders of magnitude more training
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data than human experts themselves [22]. In short, deep RL, at least in its initial incarnation, appears
much too slow to offer a plausible model for human learning. Or so the argument has gone [23, 24].

The critique is indeed applicable to the first wave of deep RL methods, reported beginning around
2013 [e.g. 25]. However, even in the short time since then, important innovations have occurred in deep
RL research, which show how the sample efficiency of deep RL can be dramatically increased. These
methods mitigate the original demands made by deep RL for huge amounts of training data, effectively
allowing deep RL to be fast. The emergence of these computational techniques revives deep RL as a
candidate model of human learning and a source of insight for psychology and neuroscience.

In the present review, we consider two key deep RL methods, which mitigate the sample efficiency
problem: episodic deep RL and meta-reinforcement learning. We examine how these techniques enable
fast deep RL, and consider their potential implications for psychology and neuroscience.

Sources of slowness of deep RL

A key starting point for considering techniques for fast RL is to examine why initial methods for deep
RL were in fact so slow. Here, we describe two of the primary sources of sample inefficiency. At the
end of the paper, we will circle back to examine how the constellations of issues described by these two
concepts are in fact connected.

The first source of slowness in deep RL is the requirement for incremental parameter adjustment.
Initial deep RL methods (which are still very widely used in AI research) employed gradient descent
to sculpt the connectivity of a deep neural network mapping from perceptual inputs to action outputs
(see Box 1). As has been widely discussed not only in AI but also in psychology [26], the adjustments
made during this form of learning must be small, in order to maximize generalization [27] and avoid
overwriting the effects of earlier learning (an effect sometimes referred to as catastrophic interference).
This demand for small step-sizes in learning is one source of slowness in the methods originally proposed
for deep RL.

A second source is weak inductive bias. A basic lesson of learning theory is that any learning procedure
necessarily faces a bias-variance trade-off: The stronger the initial assumptions the learning procedure
makes about the patterns to be learned — that is, the stronger the initial inductive bias of the learning
procedure — the less data will be required for learning to be accomplished (assuming the initial inductive
bias matches what’s in the data!). A learning procedure with weak inductive bias will be able to master
a wider range of patterns (greater variance), but will in general be less sample efficient [28]. In effect,
strong inductive bias is what allows fast learning. A learning system that only considers a narrow range
of hypotheses when interpreting incoming data will, perforce, hone in on the correct hypothesis more
rapidly than a system with weaker inductive biases (again, assuming the correct hypothesis falls within
that narrow initial range). Importantly, generic neural networks are extremely low-bias learning systems;
they have many parameters (connection weights) and are capable of using these to fit a wide range of
data. As dictated by the bias-variance trade-off, this means that neural networks, in the generic form
employed in the first deep RL models (see Box 1) tend to be sample-inefficient, requiring large amounts
of data to learn.

Together, these two factors — incremental parameter adjustment and weak inductive bias — explain
the slowness of first-generation deep RL models. However, subsequent research has made clear that both
of these factors can be mitigated, allowing deep RL to proceed in a much more sample-efficient manner.
In what follows, we consider two specific techniques, one of which confronts the incremental parameter
adjustment problem, and the other of which confronts the problem of weak inductive bias. In addition to
their implications within the AI field, both of these AI techniques bear suggestive links with psychology
and neuroscience, as we shall detail.

Episodic deep RL: Fast learning through episodic memory

If incremental parameter adjustment is one source of slowness in deep RL, then one way to learn faster
might be to avoid such incremental updating. Naively increasing the learning rate governing gradient
descent optimization leads to the problem of catastrophic interference. However, recent research shows
that there is another way to accomplish the same goal, which is to keep an explicit record of past events,
and use this record directly as a point of reference in making new decisions. This idea, referred to
as episodic RL [29, 30], parallels ‘non-parametric’ approaches in machine learning [28] and resembles
‘instance-’ or ‘exemplar-based’ theories of learning in psychology [31, 32]. When a new situation is
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encountered and a decision must be made concerning what action to take, the procedure is to compare
an internal representation of the current situation with stored representations of past situations. The
action chosen is then the one associated with the highest value, based on the outcomes of the past
situations that are most similar to the present. When the internal state representation is computed by a
multi-layer neural network, we refer to the resulting algorithm as “episodic deep RL”. A more detailed
explanation of the mechanics of episodic deep RL is presented in Box 2.

In episodic deep RL, unlike the standard incremental approach, the information gained through each
experienced event can be leveraged immediately to guide behavior. However, whereas episodic deep RL
is able to go ‘fast’ where earlier methods for deep RL went ‘slow,’ there is a twist to this story: Episodic
deep RL’s fast learning depends critically on slow incremental learning. This is the gradual learning of
the connection weights that allows the system to form useful internal representations or embeddings of
each new observation. The format of these representations is itself learned through experience, using the
same kind of incremental parameter updating that forms the backbone of standard deep RL. Ultimately,
the speed of episodic deep RL is enabled by this slower form of learning. That is, fast learning is enabled
by slow learning.

This dependence of fast learning on slow learning is no coincidence. As we will argue below, it is
a fundamental principle, applicable to psychology and neuroscience no less than AI. Before turning to
a consideration of this general point, however, we examine its role in the second recently developed AI
technique for rapid deep RL: meta-reinforcement learning.

Meta-reinforcement learning: Speeding up deep RL by learning
to learn

As discussed earlier, a second key source of slowness in standard deep RL, alongside incremental updating,
is weak inductive bias. As formalized in the idea of the bias-variance tradeoff, fast learning requires the
learner to go in with a reasonably sized set of hypotheses concerning the structure of the patterns that it
will face. The narrower the hypothesis set, the faster learning can be. However, as foreshadowed earlier,
there is a catch: A narrow hypothesis set will only speed learning if it contains the correct hypothesis.
While strong inductive biases can accelerate learning, they will only do so if the specific biases the learner
adopts happen to fit with the material to be learned. As a result of this, a new learning problem arises:
How can the learner know what inductive biases to adopt?

One natural answer to this question is to draw on past experience. Of course, this self-evidently
occurs all the time in daily life. Consider, for example, the task of learning to use a new smart-phone.
In this context, one’s past experience with smart-phones and other related devices will inform one’s
hypotheses concerning the way the new phone should work, and will guide exploration of the phone’s
operation. These initial hypotheses correspond to the ‘bias’ in the bias-variance tradeoff, and they are
responsible for the ability to quickly learn how to use the new phone. A learner without these biases
(i.e., with higher ‘variance’) would consider a wider range of hypotheses about the phone’s operation, at
the expense of learning speed.

The leveraging of past experience to accelerate new learning is referred to in machine learning as
meta-learning [33]. However, not surprisingly, the idea originates from psychology, where it has been
called ‘learning to learn.’ In the first paper to use this term, Harlow [34] presented an experiment that
captures the principle neatly. Here, monkeys were presented with two unfamiliar objects, and permitted
to grab one of them. Beneath lay either a food reward or an empty well. The objects were then placed
before the animal again, possibly left-right reversed, and the procedure repeated, and went on doing so
for a total of six rounds. Two new and unfamiliar objects were then substituted in, and another six trials
ensued with these objects. Then another pair of objects, and so forth. Across many object pairs, the
animals were able to figure out that a simple rule always held: One object yielded food and the other
did not, regardless of left-right position. When presented with a new pair of objects, Harlow’s monkeys
were able to learn in one shot which the preferable object was, a simple but vivid example of learning
to learn (see Box 3).

Returning now to AI, recent work has shown how learning to learn can be leveraged to speed up
learning in deep RL. This general idea has been implemented in a variety of ways [35, 36]. However, one
approach that has particular relevance to neuroscience and psychology was proposed simultaneously by
Wang [37] and Duan [38] and their colleagues. Here, a recurrent neural network is trained on a series
of interrelated RL tasks. The weights in the network are adjusted very slowly, so they can absorb what
is common across tasks, but cannot change fast enough to support the solution of any single task. In
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Figure 1: Schematic of meta-reinforcement learning, illustrating the inner and outer loops
of training. The outer loop trains the parameter weights θ, which determine the inner-loop learner
(”Agent”, instantiated by a recurrent neural network) that interacts with an environment for the duration
of the episode. Every cycle of the outer loop, a new environment is sampled from a distribution of
environments, which share some common structure.

this setting, something rather remarkable occurs. The activity dynamics of the recurrent network come
to implement their own separate RL algorithm, which ‘takes responsibility’ for quickly solving each new
task, based on knowledge accrued from past tasks (Figure 1). Effectively, one RL algorithm gives birth
to another, and hence the moniker ‘meta-reinforcement learning’.

As with episodic deep RL, meta-reinforcement learning again involves an intimate connection between
fast and slow learning. The connections in the recurrent network are updated slowly across tasks, allowing
general principles that span tasks to be ‘built into’ the dynamics of the recurrent network. The resulting
network dynamics implement a new learning algorithm which can solve new problems quickly, because
they have been endowed with useful inductive biases by the underlying process of slow learning (see Box
3). Once again, fast learning arises from, and is enabled by, slow learning.

Episodic meta-reinforcement learning

Importantly, the two techniques we have discussed above are not mutually exclusive. Indeed, recent
work has explored an approach to integrating meta-learning and episodic control, capitalizing on their
complementary benefits [39, 40]. In episodic meta-RL, meta-learning occurs within a recurrent neural
network, as described in the previous section and Box 3. However, superimposed on this is an episodic
memory system, the role of which is to reinstate patterns of activity in the recurrent network. As in
episodic deep RL, the episodic memory catalogues a set past events, which can be queried based on the
current context. However, rather than linking contexts with value estimates, episodic meta-RL links
them with stored activity patterns from the recurrent network’s internal or hidden units. These patterns
are important because, through meta-RL, they come to summarize what the agent has learned from
interacting with individual tasks (see Box 3 for details). In episodic meta-RL, when the agent encounters
a situation that appears similar to one encountered in the past, it reinstates the hidden activations from
the previous encounter, allowing previously learned information to immediately influence the current
policy. In effect, episodic memory allows the system to recognize previously encountered tasks, retrieving
stored solutions.

Through simulation work in bandits and navigation tasks, Ritter et al. [39] showed that episodic meta-
RL, just like ‘vanilla’ meta-RL, learns strong inductive biases that enable it to rapidly solve novel tasks.
More importantly, when presented with a previously encountered task, episodic meta-RL immediately
retrieves and reinstates the solution it previously discovered, avoiding the need to re-explore. On the
first encounter with a new task, the system benefits from the rapidity of meta-RL; on the second and
later encounters, it benefits from the one-shot learning ability conferred by episodic control.
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Implications for neuroscience and psychology

As we discussed at the outset, the problem of sample inefficiency has been adduced as a reason for
questioning the relevance of deep RL to learning in humans and other animals [23, 24]. One important
implication of episodic deep RL and meta-RL, from the point of view of psychology and neuroscience, is
that they undermine this argument, by showing that deep RL in fact need not be slow. This demonstra-
tion goes some distance toward defending deep RL as a potential model of human and animal learning.
Beyond this general point, however, the specifics of episodic deep RL and meta-RL also point to inter-
esting new hypotheses in psychology and neuroscience.

To begin with episodic deep RL, we have already noted the interesting connection between this
and classical instance-based models of human memory, where cognition operates over stored information
about specific previous observations [31, 32]. Episodic RL offers a possible account for how instance-based
processing might subserve reward-driven learning. Intriguingly, recent work on reinforcement learning
in animals and humans has increasingly emphasized the potential contribution of episodic memory, with
evidence accruing that estimates of state and action value are based on retrieved memories for specific
past action-outcome observations [41, 42, 43, 44]. Episodic deep RL provides a forum for exploring
how this general principle might scale to rich, high-dimensional sequential learning problems. Perhaps
more fundamentally, it highlights the important role that representation learning and metric learning
might play in RL based on episodic memory. Episodic deep RL thus suggests that it may be fruitful to
investigate the way that fast episodic RL in humans and animals may interact with and depend upon
slower learning processes. While this link between fast and slow learning has been engaged in work on
memory per se, including work on multiple memory systems [26, 45, 46, 47], its role in reward-based
learning has not been deeply explored [although see 48].

Moving to meta-reinforcement learning, this framework also has interesting potential implications for
psychology and neuroscience. Indeed, Wang and colleagues [49] have proposed a very direct mapping
from the elements of meta-RL to neural structures and functions. Specifically, they propose that slow,
dopamine-driven synaptic change may serve to tune the activity dynamics of prefrontal circuits, in such a
way that the latter come to implement an independent set of learning procedures (Box 4). Through a set
of computer simulations, Wang and colleagues [49] demonstrated how meta-RL, interpreted in this way,
can account for a diverse range of empirical findings from the behavioral and neurophysiology literatures
(see Box 4).

Equally direct links connect episodic meta-RL with psychology and neuroscience. Indeed, the rein-
statement mechanism involved in episodic meta-RL was directly inspired by neuroscience data indicating
that episodic memory circuits can serve to reinstate patterns of activation in cerebral cortex, including
areas supporting working memory [see 40]. Ritter and colleagues [39] show how such a function could
itself be configured through reinforcement learning, giving rise to a system that can strategically reinstate
information about tasks encountered earlier [see also 50, 51, 52]. In addition to the initial inspiration
it draws from neuroscience, this work links back to biology by providing a parsimonious explanation
for recently reported interactions between episodic and model-based control in human learning [53]. On
a broader level, the work reported by Ritter and colleagues [39] provides an illustration of how meta-
learning can operate over systems involving multiple memory systems [26], slowly tuning these systems
and their interactions in a way that allows them to collectively support rapid learning.

Fast and slow RL: Broader implications

In discussing both episodic RL and meta-RL, we have emphasized the role of ‘slow’ learning in enabling
fast, sample-efficient learning. In meta-RL, as we have seen, the role of slow, weight-based learning is to
establish inductive biases that can guide inference and thus support rapid adaptation to new tasks. The
role of slow, incremental learning in episodic RL can be viewed in related terms. Episodic RL inherently
depends on judgments concerning resemblances between situations or states. Slow learning shapes the
way that states are internally represented, and thus puts in place a set of inductive biases concerning
which states are most closely related.

Looking at episodic RL more closely, one might also say that there is an inductive bias built into
the learning architecture. In particular, episodic RL inherently assumes a kind of smoothness principle:
Similar states will generally call for similar actions. Rather than being learned, this inductive bias is
wired into the structure of the learning system that defines episodic RL. In current AI parlance, this is
a case of ‘architectural’ or ‘algorithmic bias,’ in contradistinction to ‘learned bias,’ as seen in meta-RL.
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A wide range of current AI research is focused on finding useful inductive biases to speed learning,
whether this is accomplished via learning or through the direct hand-design of architectural or algorithmic
biases. Indeed, the latter strategy has itself been largely responsible for the current resurgence of neural
networks in AI. Convolutional neural networks, which provided the original impulse for this resurgence,
build in a very specific architectural bias, connected with translational invariance in image recognition.
However, over the past few years, an increasingly large portion of AI research has been focused, either
explicitly or implicitly, on the problem of inductive bias [see, e.g., 54, 55, 56].

At a high level, these developments of course parallel some long-standing concerns in psychology. As
we have already noted, the idea that inductive biases may be acquired through learning in fact originally
derives from psychology [34], and has remained an intermittent topic of psychological research [see, e.g.,
23]. However, meta-learning in neural networks may provide a new context to explore the mechanisms
and dynamics of such learning-to-learn processes, especially in the reinforcement learning setting.

Psychology, and in particular developmental psychology, has also long considered the possibility that
certain inductive biases are ‘built in,’ that is, innately specified [57]. However, the more mechanistic
notion of architectural bias, and of biases built into neural network learning algorithms, have been less
widely considered [although see 58, 59, 60]. Here again, current methods for deep learning and deep RL
provide a toolkit that may be helpful in further exploration, perhaps, for example, in considering the
implications of growing information about brain connectivity [61, 62, 63].

It is worth noting that, whereas AI work draws a sharp distinction between inductive biases that
are acquired through learning and biases that are ‘wired in’ by hand, in a biological context a more
general, unifying perspective is available. Specifically, one can view architectural and algorithmic biases
as arising through a different learning process, driven by evolution. Here, evolution is the ‘slow’ learn-
ing process, gradually sculpting architectural and algorithmic biases that allow faster lifetime learning.
On this account, meta-learning plays out not only within a single lifespan, but also over evolutionary
time. Interestingly, this view implies that evolution does not select for a truly ‘general-purpose’ learning
algorithm, but for an algorithm which exploits the regularities in the particular environments in which
brains have evolved. In this context, recent developments in AI may once again prove handy in exploring
implications for neuroscience and psychology. Recent AI work has delved increasingly into methods for
building agent architectures, as well as reward functions, through evolutionary algorithms, inspired by
natural selection [15, 64, 65, 66, 67].

Whether it focuses on hand-engineering or evolution, AI work on architectural and algorithmic bias
furnishes us with a new laboratory for investigating how evolution might sculpt the nervous system to
support efficient learning. Possibilities suggested by AI research include constraints on the initial pattern
of network connectivity [36]; shaping of synaptic learning rules [35, 68, 69]; and factors encouraging the
emergence of disentangled or compositional representations [54, 70, 71] and internal predictive models
[51].

Such work, when viewed through lens of psychology, neuroscience, and evolutionary and developmen-
tal studies, yields a picture at which learning is operating at many time-scales at once – literally running
from millennia to milliseconds – with slower time-scales yielding biases that enable faster learning at
levels above, with all of this playing out across evolutionary, developmental and diurnal time-scales,
following a trajectory that is strongly influenced by the structure of the environment [see 72]. From
this perspective, evolution shapes architecture and algorithm, which embed inductive biases; these then
shape lifetime learning, which itself develops further inductive biases based on experience. Within this
picture, evolution appears as the ‘slowest’ learning process in a cascade, with each layer supporting a
next, ‘faster’ level by serving inductive biases to that next level.

As many readers will recognize, this meta-learning-based perspective is not entirely new to cognitive
science. As pointed out earlier, the idea of learning-to-learn has held a place in psychology for decades
[34, 73], and hierarchical Bayesian models of learning have long emphasized closely related ideas, with
prior probabilities providing the medium for inductive biases [23, 74, 75, 76, 77]. Research on biological
evolution has also touched on related ideas [66]. Despite these precedents, the recent surge in AI research
investigating the role of slow and fast learning in neural networks, and in reinforcement learning, provides
a genuinely new set of perspectives, and a new set of opportunities.

Concluding remarks and future directions

The rapidly developing field of deep reinforcement learning holds great interest for psychology and
neuroscience, given its integrated focus on representation learning and goal-directed behavior. In the
present review, we have described recently emerging forms of deep RL that overcome the apparent
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problem of sample inefficiency, allowing deep RL to work ‘fast.’ These techniques not only reinforce
the potential relevance of deep RL to psychology and neuroscience, countering some recent skeptical
assessments; they enrich the potential connections by establishing connections to themes such as episodic
memory and learning to learn. Furthermore, ideas arising from deep RL research increasingly suggest
concrete and specific directions for new research in psychology and neuroscience.

As we have stressed, a key implication of recent work on sample-efficient deep RL is that where
fast learning occurs, it necessarily relies on slow learning, which establishes the representations and
inductive biases that enable fast learning. This computational dialectic provides a theoretical framework
for studying multiple memory systems in the brain, as well as their evolutionary origins. However,
human learning likely involves multiple interacting processes, beyond those discussed in this review, and
we imagine that any deep RL model will need to integrate all of these in order to approach human-like
learning. At a broader level, understanding the relationship between fast and slow in reinforcement
learning provides a compelling, organizing challenge for psychology and neuroscience. Indeed, this may
be a key area where AI, neuroscience and psychology can synergistically interact, as has always been the
ideal in cognitive science.

Outstanding questions

• Can AI methods for sample-efficient deep RL scale to the kinds of rich task environments humans
cope with? In particular, can these methods engender rich abstractions of the kind that underlie
human intelligence? What kind of training environments might be necessary for this?

• Does flexible, sample-efficient human learning arise from mechanisms related to those currently
being explored in AI? If so, what is their neural implementation? Does something like gradient
descent learning – so important for current AI techniques – occur in the brain, or is the same role
played by some different mechanism?

• What inductive biases are most important for learning in the environment that human learners
inhabit? To what extent were these acquired through evolution and genetically or developmentally
specified, and to what extent are they acquired through learning?

• One thing that makes human learners so efficient is that we are active, strategic information-seekers.
What are the principles that structure and motivate human exploration, and how can we replicate
those in AI systems?
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Box 1: Deep reinforcement learning

(a)

(b)

(c)

Predicted probability
of winning

Backgammon position

Figure I: Representative examples of deep RL.

Reinforcement learning centers on the problem of learning a behavioral policy —a mapping from
states or situations to actions —which maximizes cumulative long-term reward [12]. In simple settings,
the policy can be represented as a look-up table, listing the appropriate action for any state. In richer
environments, however, this kind of simple listing is infeasible, and the policy must instead be encoded
implicitly as a parameterized function. Pioneering work in the 1990s showed how this function could be
approximated using a multi-layer (or deep) neural network [78, 79], allowing gradient-descent learning
to discover rich, non-linear mappings from perceptual inputs to actions (see panel a and below). How-
ever, technical challenges prevented the integration of deep neural networks with RL until 2015, when
breakthrough work demonstrated how deep RL could be made to work in complex domains such as Atari
video games [13] (see panel b and below). Since then, rapid progress has been made toward improving
and scaling deep RL [80], allowing its application to complex task domains such as Go [16] and capture
the flag [81]. In many cases, the later advances have involved integrating deep RL with architectural and
algorithmic complements, such as tree search [16] or slot-based, episodic-like memory [52] (see panel c
and below). Other developments have focused on the goal of learning speed, allowing deep RL to make
progress based on just a few observations, as reviewed in the main text.

The figure illustrates the evolution of deep RL methods, starting in panel a with Tesauro’s ground-
breaking backgammon-playing system ‘TD-gammon’ [78]. This centered on a neural network which took
as input a representation of the board and learned to output an estimate of the ‘state value,’ defined as
expected cumulative future rewards, here equal simply to the estimated probability of eventually winning
a game from the current position. Panel b shows the Atari-playing DQN network reported by Mnih and
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colleagues [13]. Here, a convolutional neural network (see reference [3]) takes screen pixels as input and
learns to output joystick actions. Panel c shows a schematic representation of a state-of-the art deep
RL system reported by Wayne and colleagues [51]. A full description of the detailed ‘wiring’ of this RL
agent is beyond the scope of the present paper (but can be found in reference [51]). However, as the
figure indicates, the architecture comprises multiple modules, including a neural network that leverages
an episodic-like memory to predict upcoming events, which ‘speaks’ to a reinforcement-learning module
that selects actions based on the predictor module’s current state. The system learns, among other tasks,
to perform goal-directed navigation in maze-like environments as shown in the figure.
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Box 2: Episodic deep RL

time

state1

...
sum of discounted rewards

state2

staten

later...Write memory for Estimate value of statenewstate1

Memory Store

sim                   ,statenew

sim                   ,statenew

sim                   ,statenew

statenewvalue estimate for

Figure I: Illustration of an example episodic RL algorithm.

Episodic reinforcement learning (RL) algorithms estimate the value of actions and states using
episodic memories [30, 43, 44]. Consider for example the episodic valuation algorithm depicted in Figure
I, wherein the agent stores each encountered state along with the discounted sum of rewards obtained
during the next n time steps. These two stored items comprise an episodic memory of the encountered
state and the reward that followed. To estimate the value of a new state, the agent computes a sum
of the stored discounted rewards, weighted by the similarity (sim.) between stored states and the new
state. This algorithm can be extended to estimate action values by recording the actions taken along
with the states and reward sums in the memory store, then querying the store to find only memories in
which the to-be-evaluated action was taken. In fact, [82] used such an episodic RL algorithm to achieve
strong performance on Atari games.

The success of episodic RL depends on the state representations used to compute state similarity. In
a follow-up to [82], [29] showed that performance could be improved by gradually shaping these state
representations using gradient descent learning. These results demonstrated strong performance and
state of the art data efficiency on the 57 games in the Atari Learning Environment [29], showcasing the
benefits of combining slow (representation) learning and fast (value) learning.
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Box 3: Meta-reinforcement learning
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Figure I: Bandits and the Harlow task. (a) Example behavior of meta-RL on two-armed bandit
problems at two difficulty levels. (b) Performance on correlated (blue) and independent (green) bandit
problems, compared to performance of standard machine learning algorithms. (c) The Harlow task,
illustration and comparison of animal to agent behavior over the course of training.

Meta-learning occurs when one learning system progressively adjusts the operation of a second learn-
ing system, such that the latter operates with increasing speed and efficiency [83, 84, 85, 86, 87]. This
scenario is often described in terms of two “loops” of learning, an “outer loop” that uses its experiences
over many task contexts to gradually adjust parameters that govern the operation of an “inner loop,” so
that the inner loop can adjust rapidly to new tasks (see Figure 1). Meta-reinforcement learning refers to
the case where both the inner and outer loop implement RL algorithms, learning from reward outcomes
and optimizing toward behaviors that yield maximal reward.

As discussed in the main text, one implementation of this idea employs a form of recurrent neural
network commonly used in machine learning: long-short term memory units (LSTM) [83, 88]. In this
setup, the ‘outer loop’ of learning involves tuning of the network’s connection weights by a standard deep
RL algorithm. Over the course of many tasks, this slowly gives rise to an ‘inner loop’ learning algorithm,
which is implemented in the activity dynamics of the recurrent network [37, 38, 50, 83, 88]. A simple
illustration involves training a recurrent neural network on a ‘two-armed bandit’ task. On every trial
the agent must select between two actions (pull the left arm or right arm), and is rewarded based on
latent parameters that govern the payoff probability for each action. During training, a series of bandit
problems is presented, each with a randomly sampled pair of payoff parameters. The agent interacts
with one bandit problem for a fixed number of steps and then moves on to another. The challenge for the
agent, in each new bandit problem, is to balance exploration of the two alternatives with exploitation of
information gained so far, seeking to maximize cumulative reward. Meta-RL learns to solve this problem,
learning to explore more on a difficult bandit problem with arm reward probabilities that are more closely
matched ([40%, 60%] vs [25%, 75%]; compare lower panel to upper panel of Figure Ia). After training on
a number of problems, the network can – even with its connection weights fixed – explore a new bandit
problem and converge on the richer arm using a strategy that compares favorably with hand-crafted
machine-learning algorithms (see Figure Ib).

Critically, the learning algorithm that arises in the network’s activity dynamics is not only indepen-
dent of the ‘outer loop’ RL algorithm that trains the network’s weights. It can also work better than
that outer loop algorithm, because it learns inductive biases that align with the tasks on which the
system is trained. An illustration is provided in Figure Ib (from Wang et al. [49]). The green line
depicts performance (cumulative regret; lower is better) after training on a set of bandit tasks across
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which the arm reward probabilities are sampled independently (”Independent bandits”), whereas the
blue line represents training on a distribution in which the arm probabilities are linked (”Correlated
bandits”; specifically, they always add to one). As the figure shows, training on correlated bandits leads
the algorithm to hone in on the superior arm more rapidly. This reflects an adaptive inductive bias,
implemented in the network’s recurrent dynamics.

Figure Ic illustrates a richer application of meta-RL. As described in the main text, Harlow [34]
introduced the idea of ”learning to learn” using a task where a monkeys chose between pairs of unfamiliar
objects, eventually showing one-shot learning based on consistent structure in the task. Specifically, for
each pair of objects, exactly one is consistently associated with reward, regardless of location. The
monkeys eventually learned to randomly select an object on trial 1, and then use the reward outcome to
perform perfectly for trials 2-6 (Figure Ic, middle panel). In recent computational modeling work, Wang
and colleagues [49] showed that meta-RL, employing a recurrent neural network, gives rise to the same
pattern of one-shot learning (Figure Ic, right panel).
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Box 4: Meta-RL and rapid learning in the brain
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Figure I: (a,b) Proportion of units coding for task-related variables: last action, last reward, interaction
of last action and last reward, and current value. (c,d) Like RPEs measured in the brain with fMRI,
RPEs in meta-RL contain model-based information. Figures from Wang et al. [49].

Wang and colleagues [49] proposed that meta-RL, as described in Box 3, can model learning in
biological brains. They argue that recurrent networks centered on prefrontal cortex (PFC) implement
the inner loop of learning, and that this inner loop algorith is slowly sculpted by an outer loop of
dopamine-driven synaptic plasticity.

We first focus on the inner loop. PFC is central to rapid learning [46, 89], and neurons in PFC code for
variables that underpin such learning. For example, Tsutsui et al. [90] recorded from primate dorsolateral
PFC (dlPFC) during a foraging task in which environmental variables are continually changing. They
found that individual neurons coded not only for the value of a current option, but also for the previous
action taken, the previous reward received, and the interaction of previous action and previous reward
(Figure IA). These are key variables for implementing an effective learning policy in this task.

Wang et al. [49] trained meta-RL (see Box 3) on the same task. They found that, over the course
of training, the artificial recurrent network came to implement a fast learning policy whose behavior
mimicked animals. Moreover, individual units in this trained network had coding properties remarkably
similar to primate dlPFC neurons (Figure IB). Wang et al. [49] proposed that meta-learning over the
course of an animal’s lifetime shapes the recurrent networks in PFC to have tuning properties that are
useful for naturalistic learning tasks.

We now turn to the outer loop. Classically, midbrain dopamine neurons are thought to carry the
reward prediction error (RPE) signal of temporal difference learning [91, 92, 93]. In this standard
theory, dopamine drives incremental adjustments to cortico-striatal synapses, and these adjustments
predispose the animal to repeat reinforced actions. This model-free learning system is often viewed as
complementary to a model-based system living in mostly distinct brain areas [94, 95, 96].

However, this standard theory is complicated by the observation that dopamine carries model-based
information [97, 98, 99]. For example, in a task designed to isolate model-based and model-free signals,
Daw et al. [97] found that, surprisingly, signals in ventral striatum – thought to be the strongest fMRI
correlate of dopaminergic prediction errors – contained robust model-based information (Figure IC).

Wang et al. [49] trained meta-RL on a variant of this task [100]. In terms of behavior, they found
that the trained recurrent network instantiated in its activity dynamics a robustly model-based learning
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procedure – despite the fact that the training procedure of meta-RL was model-free. When they examined
meta-RL’s RPEs, they found that the RPEs contained significant model-based information (Figure ID).
Much work has been devoted to understanding how the brain learns and uses models [46, 101, 102,
103]. Meta-RL provides a single elegant explanation: that dopamine-dependent model-free learning
automatically shapes recurrent networks to become a model-based learning algorithm.

In summary, meta-reinforcement learning may be an important principle of brain organization. In this
model, slow, incremental learning processes shape recurrent brain circuits into algorithms that exploit
consistent structure in the environment to learn efficiently [for related work, see 87, 104, 105].
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Glossary

Neural network: A learnable set of weights and biases arranged in layers which process an input in
order to produce an output. To learn more, see McClelland and Rumelhart’s seminal primer [106].

Hidden layer: A layer of a neural network in between the input and output layers.

Deep neural network: A neural network with one or (typically) more hidden layers.

Embedding: A learned representation residing in a layer of a neural network.

Non-parametric: In a non-parametric model, the number of parameters is not fixed, and can grow as
more data is provided to the model.

Recurrent neural network: A neural network that runs at each time step in a sequence, passing
its hidden layer activations from each step to the next.
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